TCseq可根据不同的聚类方法将基因按照表达模式分类
BiocManager::install("TCseq") library(TCseq) data <- read.delim('df_TCseq.xls', row.names = 1, sep = '\t', check.names = FALSE) data <- as.matrix(data) tca <- timeclust(data, algo = "cm", k = 6, standardize = TRUE) #character string giving a clustering method. Options are km' (kmeans), 'pam' (partitioning around medoids), 'hc' (hierachical clustering), 'cm' (cmeans). p <- timeclustplot(tca, value = "z-score(TPM)", cols = 3)#所有cluster合并一个图 print(p[[1]])#单一cluster作图 a <- as.data.frame(tca@cluster) table(a) names(a) <- 'Cluster' Cluster2 <- subset(a,Cluster == 2) write.table(Cluster2, file="Cluster2_gene.xls", sep="\t", quote=F, row.names=T, col.names=T)
导出不同cluster基因做功能富集
Leave a Reply